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Control of chaos by occasional bang-bang
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The stabilization of a periodic saddle orkiihe target orbif) in a strange attractor is usually achieved by the
application of a sequence of parameter perturbations designed to place the system state in the stable manifold
of the target, whereupon it evolves unperturbed to the target orbit. Controls of this type originated with the
method of Ott, Grebogi, and York@GY), and usually require a continuously variable parameter for map
based control. Bang-bang control is a method whereby control is achieved by the application of a fixed, or
several different fixed perturbations, rather than a continuous range of perturbations, and generally requires a
flexible scheduling. If we have available only fixed perturbation levels, and can apply control only at regular
intervals and for fixed durations, standard OGY will not work. We demonstrate a method that will control maps
and continuous systems at a surface of section, albeit imprecisely, with a single fixed perturbation of fixed
duration. We call this occasional bang bang.
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Much work has been done on so-called bang-bang control I. OBB CONTROL OF ATOY SYSTEM
in the classical control theory literatuf&—3], but very little
has been written from the viewpoint of chaos control. The method of occasional bang-bang control can be sim-
Starrett and Tagd4] showed that a parametrically forced ply demonstrated on a one-dimensional expanding map. Let
chaotic pendulum could be controlled by the application of af:R— R with
fixed perturbation for an amount of time proportional to the
deviation of the current state from the target orbit. This type
of bang-bang control is known as time proportioned pertur-
bations(TPP, and uses a controller whose on-time is vari-
able. Epureanu and Dowéb] considered a one-dimensional
OGY (Ott, Grebogi, and Yarkeproblem in the course of
investigation of higher-dimensional OGY control and found
that a bang-bang solution was optimal for that case.

We propose a controller that is effective in controlling an
orbit nearby a target orbit when the controller can take on
only one or two perturbed values and only one value of

f(X):Xpr1=AXn, Ae(1,2

a linear expanding map. Then the action of the map on al-
most all initial conditionsxy,e[—1,1] maps x,, out of
[ —1,1] for some values oi. If we replacef with

on-time, and demonstrate it on a model of a parametrically Xi 1 =A(X+1)—1, xie[—1,—1/2]

forced pendulum. As with OGY7] control, the control feed- = hX % (—1/2.1/2

back is derived solely from information taken from a map or F(x)= i+l b ! ' (1)
surface of section map and the control on-time is equal to a Xip1=AX—1)+1, xe[l/2,1]

single iterate of the map, that is, the control remains on for a
full forcing cycle. Throughout this paper, we assume we are
dealing with a two-dimensional map, or a periodically forced
three-dimensional system with a two-dimensional Poincar
map, whose dynamics near saddle orbits are nearly linear.
Suppose we have a chaotic map 1= f(x;,p), which

has a saddle orbit we wish to stabilize, and a control pa-
rameterp that can take on only two values, the nominal

value po, and a perturbatio;. With only two values of (—1/2,1/2).F(x) is a member of a family of maps known as
perturbation_,it is impossible to guide a nearby osbtb the shift maps or Bernoulli maps, arfdand F(x) are shown in
target orbitx, or even to linear stable manifole, of the  Fig, 1.

target orbit, as with OGY control. We settle instead for sta- \we can use the same control strategy for a two-

bilizing another orbit, or set of orbits, in a small region neargimensional toy system. Consider the map, = Ax;, where
the target orbit. Control is achieved by applying the pertur-p is a 2x 2 matrix with distinct unit eigenvectors ,e, and

bation irregularly, scheduled so as to guarantee that the sys-

tem state will be alternately driven towards the stable mani@Ssociated eigenvalues<Qi <1<\ ,<2. Letx=xe,+ye

fold of the unperturbed target orbit and allowed to moveP€ the state vector written i's eigenvector basis. Then for
away a little before control is applied again. the coefficient,y, the map

Xi+1:)\xi1 Xie(_ooll)!(law)

fhen we have replaced an uncontrolled systdrx) with a
controlled system~(x), because for any initial condition
xoe[—1,1], the orbitF1(x,) will remain in[ —1,1] for all
Ij. The control is off forx; e (—1/2,1/2) and is turned on for
Xje[—1,—1/2] or[1/2,1] and remains on unti; is again in
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FIG. 1. The map on the left, is uncontrolled, as any initial
condition xy in [ —1,1] will escape exponentially fast, while the
variation on the rightF(x) is controlled, in that any initial condi-
tion X in [—1,1] will remain in [—1,1] for all time. Units are
nondimensional.

Xio1=Ay(+1)—1, Xe[—-1,-1/2]
Vier=A(Vit 1) =1, Xe[—1,~1/2]
Xis1=NuXi Xie(—1/2,1/2
Yie1=\sYi, Xie(—1/2,1/2
Xii1=Ay(X—1)+1, xe[1/2,1]
Vier=A(Yi—1)+1, X e[1/2,1]

G(x,y)=

;(H_l:)\uii, ;(ie(—so,l),(l,oo)

9i+l:)\5§li1 ;(ie(_ooal)v(lvoo)
)
acts as a controlled system, with the dynamics alongethe

direction mimicking the action of the Bernoulli map of Eq.
(1). Note that the dynamics in the direction are indepen-

dent of the§/ coefficient. A graph of an orbit of this two-

dimensional toy system withA=[22 %! is shown

in Fig. 2.

II. OBB FOR SIMPLE SADDLES

Suppose we have a two-dimensional chaotic rhapth
state variablex whose linearization near a saddle orfifte

1

FIG. 2. Orbit of a toy system with eigenvaluadg~1.62, \g
~0.58, and eigenvector~(0.1,—1.0), e,~(—0.98-0.2). The
units are nondimensional.
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target orbif x is x; .1 =AX;, whereA is a 2xX 2 matrix with
eigenvalues &\ <1<\ ,<2, associated unit eigenvectors
e,e,, and x=x—x. Further suppose the system has a pa-
rameterp whose nominal value is set jg, and we allow for
one level of perturbatiodp=p,—pg, Wherep, is the per-
turbed parameter value. The change in the location of the
target orbit withp is g= dx/dp, and we assumgdoes not lie
along the stable manifole, (otherwise the system would be
uncontrollable¢. The dynamics under the perturbatidip;

will be xi+l—~5pi~g=~A(xi— opiQ).

Denote bye;,e,,x the perturbed stable and unstable unit
eigenvectors, and the perturbed target orbit, respectively.
When the system enters a controllable region bounded by
lines along the eigenvectors, e, ,es,e,, the controller de-
cides to turn on or off based on whether the system state is

nearer the perturbee, or the unperturbee, stable mani-
folds. Write g in a basis of the eigenvectors &f i.e., 9
=g.6+9g,€e,- Then alined from gses+(g,/2)e, to (g,/2)e,
divides the parallelogram bounded by,e, &€, into two
equal parts. The region bounded in the unstable direction by

d ande, we call theoutbox and one bounded hyande, we

call theinbox The names are chosen because points in the
inbox will be drivenin towardses, and those in the outbox
will be drivenout, or away, frome;. Figure 3 illustrates the
geometry of the control. If the system state is in the inbox,
the control will be on and the system will be driven towards
the unperturbed stable manifold for as many iterates as it
takes for the system to enter the outbox. Once in the outbox,
it will evolve under the unperturbed dynamics until it enters
the inbox, and the cycle will begin anew.

Ill. OBB FOR FLIP SADDLES

While linear saddles of true maps in two dimensions can
have eigenvalues of mixed sign, Poincamaps extracted

unIerturbed

FIG. 3. The perturbed and unperturbed stable and unstable
eigenvectors of the local linear map enclose a controllable region
(in gray). This region is divided into two subregions determined by
the dynamics, which are in effect for system states in that region.
States in thenbox evolve under the perturbed dynamics, and those
in the outboxevolve under the unperturbed dynamics.
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FIG. 4. The one-dimensional control setup associated with OBB
for flip saddles with one level of perturbation. The target orbit is

labeledx and the perturbed target orbit is labelgg. Units are o)
nondimensional.

from continuous three-dimensional systems support only

simple and flip saddles, whose eigenvalues are both positive

or both negative, respectively. Should the target orbit be a

flip saddle, then the control is complicated by the flipping of i & ' 2 k| i

the orbit on either side of the manifold. - O@(t-7)(rad) F/ 2
As with a simple saddle, the size of the controllable re-

gion is determined by the dynamics in the unstable direction, FIG. 5. The reconstructed attractor for the over-the-top mode of

so we consider the action of a one-dimensional map a|ongle parametricallysinusoidal verticalforced pendulum, wheré is
e,. Let x lie in e,. Then the mapx;,,=Ax reduces to e angular position and is the delay time.. The control box is in
. 1 " i+17 I

o . the upper left of the fourth quadrant, and is nearly square since the
Xi+1=N\yX;, Where, as before is the component af along  gtaple and unstable manifolds are nearly orthogonal and aligned
the g, direction. The OBB controlled version of this map is \ith the coordinates.

Xie1=hXin  Xi<Xp tion by lines parallel toe;, and through —g,(A,— 1/\,

g +1)e, andg,(A,— 1\, +1)eg,.
u
Xb!_:l

> The boundaries of the controllable region in the stable

direction are not as easily determined. An intelligent choice
may depend on the linearity of the stable manifold, the loca-
3) tion of the saddle in the attractor, the relative size of the
stable and unstable eigenvalues, among other considerations
(see Ref[6] for arguments about controllable regions and
Xii1=NgXis  Xi>0u—Xp, linearity). We have found that a rhombus with sides parallel
to e, ,&; and centered on the target orbit works satisfactorily.
wherex, ,g,—X;, are the as yet undetermined bounds of the  OBB control for flip saddles with one level of perturba-
controllable region. Figure 4 shows the geometry of the contion, therefore, consists of waiting until the system enters the
trol alonge, . As before, the dynamics in thes direction do  controllable region, then applying perturbations according to
not enter into control decisions.
OBB loses control wheﬁj<xb or §<j>gu—xb. Since the
controlled system is symmetric abaogif/2, a period two or-
bit betweenx,, andg,— X, separates the controllable region

from the uncontrollable region. Setting,=%;, we have perturbation on X e (gu/2gu(Ny/1+Xy)]. 4
Xi+2= My(AyXi—0u) + 9y, SO

Xit1=NgXi, X €

. . . (g
Xit1=Ay(Xi—Qu)+ 0y, Xie€ (%vgu_xb

perturbation off X e

gu(1/2+ )\u),%

1 Ay
Xb:gul_'_)\ ) gu_xb:gul_'_)\ .
u u

It is possible with this type of control for points negy/2 to
map out off g,(1/1+X\,),gu(A/2+X,)]. In order to ensure
a continuous controllable region, we require tligi2 be
controllable, that is, we require ,(g,/2)=g,(1/1+X\,).
Solving this forA,, we find the system has a continuous
controllable region for—2<\,<-1. Thus, OBB control
with one fixed level of perturbation is effective for flip
saddles whose unstable eigenvalue satisfi@s<\,<-1, _ :
and over a region bounded in the unstable direction by lines ( drive cycles 2094
parallel to e, and throughg,(1/1+\,)e, and g,(A, /1

FIG. 6. A time series of the controlled orbit of the pendulum,
tAy)ey. ) ) ~with the delayed coordinate(t— 7), wherer is the delay time, on

If we have available two equal and opposite perturbationsye vertical axis. The three levels of control perturbation are shown
a similar calculation shows that OBB is effective for flip magnified by a factor of five in the bottom box, with the center
saddles whose unstable eigenvalue satisfigd + \/17/2) being the nominal control valye=0.23. The control was turned on
<\,=<-—1, and over a region bounded in the unstable direcand off four times over the course of 2094 drive cycles.
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FIG. 7. A closeup of the Poincasection of the controlled orbit FIG. 8. The phase portrait of the controlled ortfitack) and the
of the pendulum. The bounding box is the control box of Fig. 5. uncontrolled orbit(gray) of the pendulum in natural coordinates

(6,6).
Likewise, for control with two equal and opposite levels of
perturbationdp_ and 6p ., we apply Figure 7 shows a closeup of the modified orbit created by
. the control. The target orbit is at the center of the crosshairs,
perturbation 6p_ xe[—g,(A,— 1M\, +1),—9,/2], while the actual controlled orbit consists of three pieces: the
center piece, where iterates are in the outbox, and the left and
perturbation off xe[—g,/2.9./2], (5)  right pieces, which are iterates in one of the two inboxes.
The target orbit in this example has a stable eigenvalue
perturbation 8p , Xe [90/2.90(Ay— 1IN+ 1)]. whose magnitude is near 0.2, so the contraction of the map is

relatively strong. This accounts for the clustering of states
near the perturbed target orbits. Figure 8 shows both the
controlled orbit(black) and the uncontrolled orbifgray) in

We controlled a model of a vertically forced pendulum the phase plane in natural coordinates.
with damping by the two-perturbation-method of Eq. 5. The
nondimensional equation of motion we use is V. SUMMARY

IV. CONTROL OF A PENDULUM BY OBB

'9:p'g+ sinfg[1— a cod wt)], In summary, the method of occasional bang-bang is ca-
pable of stabilizing a chaotic system represented by a two-
wherep is velocity dependent damping,is the angle mea- dimensional map nearby any one of its periodic orbits by
sured counterclockwise from the straight down positiens  occasional fixed perturbations for a fixed length of time, pro-
the amplitude of the forcing, and is the forcing frequency. vided the magnitude of the unstable eigenvalue lies between
In our study, 0.2%& p=<0.25 with 6p,;1=0.23, «=1.2, and limits that depend on the saddle type. We successfully dem-
w=1.5. The simulation uses time-delay coordinates with theonstrated the method on a period-one flip orbit of a model of
delay time 7 equal to 12/25 of the forcing cycle. Figure 5 a vertically forced chaotic pendulum. Because of the simplic-
shows the attractor of the pendulum in its uncontrolled stateity of its control rule, it may be useful for fast systems, for
Figure 6 shows a time series control graph of the penduexample, diode oscillators or lasers, without the need for
lum. The modified orbit is centered on the target orbit, whichcomputer calculation, since a comparator can decide to turn
lies in the center of the middle region of the controlled orbit.the control on or off based on a predetermined voltage level.
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