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Control of chaos by occasional bang-bang
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~Received 7 July 2002; revised manuscript received 8 November 2002; published 11 March 2003!

The stabilization of a periodic saddle orbit~the target orbit! in a strange attractor is usually achieved by the
application of a sequence of parameter perturbations designed to place the system state in the stable manifold
of the target, whereupon it evolves unperturbed to the target orbit. Controls of this type originated with the
method of Ott, Grebogi, and Yorke~OGY!, and usually require a continuously variable parameter for map
based control. Bang-bang control is a method whereby control is achieved by the application of a fixed, or
several different fixed perturbations, rather than a continuous range of perturbations, and generally requires a
flexible scheduling. If we have available only fixed perturbation levels, and can apply control only at regular
intervals and for fixed durations, standard OGY will not work. We demonstrate a method that will control maps
and continuous systems at a surface of section, albeit imprecisely, with a single fixed perturbation of fixed
duration. We call this occasional bang bang.
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Much work has been done on so-called bang-bang con
in the classical control theory literature@1–3#, but very little
has been written from the viewpoint of chaos contr
Starrett and Tagg@4# showed that a parametrically force
chaotic pendulum could be controlled by the application o
fixed perturbation for an amount of time proportional to t
deviation of the current state from the target orbit. This ty
of bang-bang control is known as time proportioned pert
bations~TPP!, and uses a controller whose on-time is va
able. Epureanu and Dowell@5# considered a one-dimension
OGY ~Ott, Grebogi, and Yarke! problem in the course o
investigation of higher-dimensional OGY control and fou
that a bang-bang solution was optimal for that case.

We propose a controller that is effective in controlling
orbit nearby a target orbit when the controller can take
only one or two perturbed values and only one value
on-time, and demonstrate it on a model of a parametric
forced pendulum. As with OGY@7# control, the control feed-
back is derived solely from information taken from a map
surface of section map and the control on-time is equal
single iterate of the map, that is, the control remains on fo
full forcing cycle. Throughout this paper, we assume we
dealing with a two-dimensional map, or a periodically forc
three-dimensional system with a two-dimensional Poinc´
map, whose dynamics near saddle orbits are nearly line

Suppose we have a chaotic mapxi 115 f (xi ,r), which
has a saddle orbitx̄ we wish to stabilize, and a control pa
rameterr that can take on only two values, the nomin
value r0, and a perturbationr1. With only two values of
perturbation, it is impossible to guide a nearby orbitx̂ to the
target orbit x̄, or even to linear stable manifoldes of the
target orbit, as with OGY control. We settle instead for s
bilizing another orbit, or set of orbits, in a small region ne
the target orbit. Control is achieved by applying the pert
bation irregularly, scheduled so as to guarantee that the
tem state will be alternately driven towards the stable ma
fold of the unperturbed target orbit and allowed to mo
away a little before control is applied again.
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I. OBB CONTROL OF A TOY SYSTEM

The method of occasional bang-bang control can be s
ply demonstrated on a one-dimensional expanding map.
f :R→R with

f ~x!:xn115lxn , lP~1,2!

a linear expanding map. Then the action of the map on
most all initial conditionsx0P@21,1# maps xm out of
@21,1# for some values ofm. If we replacef with

F~x!55
xi 115l~xi11!21, xiP@21,21/2#

xi 115lxi , xiP~21/2,1/2!

xi 115l~xi21!11, xiP@1/2,1#

xi 115lxi , xiP~2`,1!,~1,̀ !

~1!

then we have replaced an uncontrolled systemf (x) with a
controlled systemF(x), because for any initial condition
x0P@21,1#, the orbitF ( j )(x0) will remain in @21,1# for all
j. The control is off forxjP(21/2,1/2) and is turned on fo
xjP@21,21/2# or @1/2,1# and remains on untilxj is again in
(21/2,1/2).F(x) is a member of a family of maps known a
shift maps or Bernoulli maps, andf andF(x) are shown in
Fig. 1.

We can use the same control strategy for a tw
dimensional toy system. Consider the mapxi 115Axi , where
A is a 232 matrix with distinct unit eigenvectorses ,eu and

associated eigenvalues 0,ls,1,lu,2. Let x̆5 x̆eu1 y̆es

be the state vector written inA’s eigenvector basis. Then fo

the coefficientsx̆,y̆, the map
©2003 The American Physical Society03-1
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G~x,y!5

¦

x̆i 115lu~ x̆i11!21, x̆iP@21,21/2#

y̆i 115ls~ y̆i11!21, x̆iP@21,21/2#

x̆i 115lux̆i , x̆iP~21/2,1/2!

y̆i 115lsy̆i , x̆iP~21/2,1/2!

x̆i 115lu~ x̆i21!11, x̆iP@1/2,1#

y̆i 115ls~ y̆i21!11, x̆iP@1/2,1#

x̆i 115lux̆i , x̆iP~2`,1!,~1,̀ !

y̆i 115lsy̆i , x̆iP~2`,1!,~1,̀ !
~2!

acts as a controlled system, with the dynamics along theu
direction mimicking the action of the Bernoulli map of E
~1!. Note that the dynamics in thees direction are indepen
dent of they̆ coefficient. A graph of an orbit of this two
dimensional toy system withA5@0.21

0.6
1.6

20.1# is shown
in Fig. 2.

II. OBB FOR SIMPLE SADDLES

Suppose we have a two-dimensional chaotic mapf with
state variablex̂ whose linearization near a saddle orbit~the

FIG. 1. The map on the left,f is uncontrolled, as any initia
condition x0 in @21,1# will escape exponentially fast, while th
variation on the right,F(x) is controlled, in that any initial condi-
tion x0 in @21,1# will remain in @21,1# for all time. Units are
nondimensional.

FIG. 2. Orbit of a toy system with eigenvalueslu'1.62, ls

'0.58, and eigenvectorseu'(0.1,21.0), es'(20.98,20.2). The
units are nondimensional.
03620
target orbit! x̄ is xi 115Axi , whereA is a 232 matrix with
eigenvalues 0,ls,1,lu,2, associated unit eigenvecto
es ,eu , and x5 x̂2 x̄. Further suppose the system has a p
rameterr whose nominal value is set tor0, and we allow for
one level of perturbationdr5r12r0, wherer1 is the per-
turbed parameter value. The change in the location of
target orbit withr is g5] x̄/]r, and we assumeg does not lie
along the stable manifoldes ~otherwise the system would b
uncontrollable!. The dynamics under the perturbationdr i
will be xi 112dr ig5A(xi2dr ig).

Denote byẽs ,ẽu ,x̃ the perturbed stable and unstable u
eigenvectors, and the perturbed target orbit, respectiv
When the system enters a controllable region bounded
lines along the eigenvectorsẽs ,ẽu ,es ,eu , the controller de-
cides to turn on or off based on whether the system stat
nearer the perturbedẽs or the unperturbedes stable mani-
folds. Write dg in a basis of the eigenvectors ofA, i.e., dg
5gses1gueu . Then a lined from gses1(gu/2)eu to (gu/2)eu

divides the parallelogram bounded byẽs ,ẽu ,es ,eu into two
equal parts. The region bounded in the unstable direction
d andes we call theoutbox, and one bounded byd andẽs we
call the inbox. The names are chosen because points in
inbox will be drivenin towardses , and those in the outbox
will be driven out, or away, fromes . Figure 3 illustrates the
geometry of the control. If the system state is in the inb
the control will be on and the system will be driven towar
the unperturbed stable manifold for as many iterates a
takes for the system to enter the outbox. Once in the outb
it will evolve under the unperturbed dynamics until it ente
the inbox, and the cycle will begin anew.

III. OBB FOR FLIP SADDLES

While linear saddles of true maps in two dimensions c
have eigenvalues of mixed sign, Poincare´ maps extracted

FIG. 3. The perturbed and unperturbed stable and unst
eigenvectors of the local linear map enclose a controllable reg
~in gray!. This region is divided into two subregions determined
the dynamics, which are in effect for system states in that reg
States in theinbox evolve under the perturbed dynamics, and tho
in the outboxevolve under the unperturbed dynamics.
3-2
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CONTROL OF CHAOS BY OCCASIONAL BANG-BANG PHYSICAL REVIEW E67, 036203 ~2003!
from continuous three-dimensional systems support o
simple and flip saddles, whose eigenvalues are both pos
or both negative, respectively. Should the target orbit b
flip saddle, then the control is complicated by the flipping
the orbit on either side of the manifold.

As with a simple saddle, the size of the controllable
gion is determined by the dynamics in the unstable direct
so we consider the action of a one-dimensional map al
eu . Let xi lie in eu . Then the mapxi 115Axi reduces to
x̆i 115lux̆i , where, as before,x̆ is the component ofx along
the eu direction. The OBB controlled version of this map

x̆i 115lux̆i , x̆i,xb

x̆i 115lux̆i , x̆iPFxb ,
gu

2 G
x̆i 115lu~ x̆i2gu!1gu , x̆iPS gu

2
,gu2xbG ~3!

x̆i 115lux̆i , x̆i.gu2xb,

wherexb ,gu2xb are the as yet undetermined bounds of
controllable region. Figure 4 shows the geometry of the c
trol alongeu . As before, the dynamics in thees direction do
not enter into control decisions.

OBB loses control whenx̆ j,xb or x̆ j.gu2xb . Since the
controlled system is symmetric aboutgu/2, a period two or-
bit betweenxb andgu2xb separates the controllable regio
from the uncontrollable region. Settingxb5 x̆i , we have
x̆i 125lu(lux̆i2gu)1gu , so

xb5gu

1

11lu
, gu2xb5gu

lu

11lu
.

It is possible with this type of control for points neargu/2 to
map out of@gu(1/11lu),gu(lu/11lu)#. In order to ensure
a continuous controllable region, we require thatgu/2 be
controllable, that is, we requirelu(gu/2)>gu(1/11lu).
Solving this for lu , we find the system has a continuo
controllable region for22<lu<21. Thus, OBB control
with one fixed level of perturbation is effective for fli
saddles whose unstable eigenvalue satisfies22<lu<21,
and over a region bounded in the unstable direction by li
parallel to es and through gu(1/11lu)eu and gu(lu/1
1lu)eu .

If we have available two equal and opposite perturbatio
a similar calculation shows that OBB is effective for fl
saddles whose unstable eigenvalue satisfies2(11A17/2)
<lu<21, and over a region bounded in the unstable dir

FIG. 4. The one-dimensional control setup associated with O
for flip saddles with one level of perturbation. The target orbit

labeled x̄ and the perturbed target orbit is labeledgu . Units are
nondimensional.
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tion by lines parallel toes and through2gu(lu21/lu
11)eu andgu(lu21/lu11)eu .

The boundaries of the controllable region in the sta
direction are not as easily determined. An intelligent cho
may depend on the linearity of the stable manifold, the lo
tion of the saddle in the attractor, the relative size of t
stable and unstable eigenvalues, among other considera
~see Ref.@6# for arguments about controllable regions a
linearity!. We have found that a rhombus with sides para
to eu ,es and centered on the target orbit works satisfactor

OBB control for flip saddles with one level of perturba
tion, therefore, consists of waiting until the system enters
controllable region, then applying perturbations according

perturbation off x̆PFgu~1/11lu!,
gu

2 G ,
perturbation on x̆P~gu/2,gu~lu/11lu!#. ~4!

B

FIG. 5. The reconstructed attractor for the over-the-top mode
the parametrically~sinusoidal vertical! forced pendulum, whereu is
the angular position andt is the delay time.. The control box is in
the upper left of the fourth quadrant, and is nearly square since
stable and unstable manifolds are nearly orthogonal and alig
with the coordinates.

FIG. 6. A time series of the controlled orbit of the pendulum
with the delayed coordinateu(t2t), wheret is the delay time, on
the vertical axis. The three levels of control perturbation are sho
magnified by a factor of five in the bottom box, with the cent
being the nominal control valuer50.23. The control was turned o
and off four times over the course of 2094 drive cycles.
3-3
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Likewise, for control with two equal and opposite levels
perturbationdr2 anddr1 , we apply

perturbationdr2 x̆P@2gu~lu21/lu11!,2gu/2#,

perturbation off x̆P@2gu/2,gu/2#, ~5!

perturbationdr1 x̆P@gu/2,gu~lu21/lu11!#.

IV. CONTROL OF A PENDULUM BY OBB

We controlled a model of a vertically forced pendulu
with damping by the two-perturbation-method of Eq. 5. T
nondimensional equation of motion we use is

ü5ru̇1sinu@12a cos~vt !#,

wherer is velocity dependent damping,u is the angle mea-
sured counterclockwise from the straight down position,a is
the amplitude of the forcing, andv is the forcing frequency.
In our study, 0.21<r<0.25 with dro f f50.23, a51.2, and
v51.5. The simulation uses time-delay coordinates with
delay timet equal to 12/25 of the forcing cycle. Figure
shows the attractor of the pendulum in its uncontrolled st

Figure 6 shows a time series control graph of the pen
lum. The modified orbit is centered on the target orbit, wh
lies in the center of the middle region of the controlled orb

FIG. 7. A closeup of the Poincare´ section of the controlled orbi
of the pendulum. The bounding box is the control box of Fig. 5
s
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Figure 7 shows a closeup of the modified orbit created
the control. The target orbit is at the center of the crossha
while the actual controlled orbit consists of three pieces:
center piece, where iterates are in the outbox, and the left
right pieces, which are iterates in one of the two inbox
The target orbit in this example has a stable eigenvaluels
whose magnitude is near 0.2, so the contraction of the ma
relatively strong. This accounts for the clustering of sta
near the perturbed target orbits. Figure 8 shows both
controlled orbit~black! and the uncontrolled orbit~gray! in
the phase plane in natural coordinates.

V. SUMMARY

In summary, the method of occasional bang-bang is
pable of stabilizing a chaotic system represented by a t
dimensional map nearby any one of its periodic orbits
occasional fixed perturbations for a fixed length of time, p
vided the magnitude of the unstable eigenvalue lies betw
limits that depend on the saddle type. We successfully d
onstrated the method on a period-one flip orbit of a mode
a vertically forced chaotic pendulum. Because of the simp
ity of its control rule, it may be useful for fast systems, f
example, diode oscillators or lasers, without the need
computer calculation, since a comparator can decide to
the control on or off based on a predetermined voltage le

FIG. 8. The phase portrait of the controlled orbit~black! and the
uncontrolled orbit~gray! of the pendulum in natural coordinate

(u,u̇).
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